
SA367 Mathematical Models for Decision Making Spring 2021 Uhan

Lesson 11. Formulating Dynamic Programming Recursions

0 Warm up

Consider the knapsack problem we studied in Lesson 5:

Example 1. You are a thief deciding which precious metals to steal from a vault:

Metal Weight (kg) Value

1 Gold 3 11
2 Silver 2 7
3 Platinum 4 12

You have a knapsack that can hold at most 8kg. If you decide to take a particular metal, you must take all of it. Which
items should you take to maximize the value of your the�?

● We formulated the following DP for this problem by giving the following longest path representation:

10

11

12

13

14

15

16

17

18

20

21

22

23

24

25

26

27

28

30

31

32

33

34

35

36

37

38

40

41

42

43

44

45

46

47

48

end
stage 1

take gold?
stage 2

take silver?
stage 3

take platinum?
stage 4
end

end

0

0

0

0

0

0

0

0

0

11
11

11
11

11
11

0

0

0

0

0

0

0

0

0

7

7

7

7

7

7

7

0

0

0

0

0

0

0

0

0

12
12

12
12

12

0
0

0
0

0
0
0

0
0

source

sink

● Let ft(n) = length of a shortest path from node tn to the end node

● In the context of the knapsack problem:

f1(8) =

f2(5) =

f3(3) =

● In other words, these are optimal values of subproblems of the knapsack problem

1

1 Formulating DP recursions

● Last lesson: recursions for shortest path problems

● Dynamic programs are not usually given as shortest/longest path problems

○ However, it is usually easier to think about DPs this way

● Instead, the standard way to describe a dynamic program is a recursion that deûnes the optimal value of one
subproblem in terms of the optimal values of other subproblems

● Let’s formulate the knapsack problem in Example 1 as a DP, but now by giving its recursive representation

● Let
wt = weight of metal t vt = value of metal t for t = 1, 2, 3

● Stages:

● States:

● Allowable decisions xt at stage t and state n:

● Contribution of decision xt at stage t and state n:

● Value-to go function ft(n) at stage t and state n:

● Boundary conditions:

2

● Recursion:

● Desired value-to-go function value:

● In general, to formulate a DP by giving its recursive representation:

Dynamic program – recursive representation

● Stages t = 1, 2, . . . , T and states n = 0, 1, 2, . . . ,N

● Allowable decisions xt at stage t and state n (t = 1, . . . , T − 1; n = 0, 1, . . . ,N)

● Contribution of decision xt at stage t and state n (t = 1, . . . , T ; n = 0, 1, . . . ,N)

● Value-to-go function ft(n) at stage t and state n (t = 1, . . . , T ; n = 0, 1, . . . ,N)

● Boundary conditions on fT(n) at state n (n = 0, 1, . . . ,N)

● Recursion on ft(n) at stage t and state n (t = 1, . . . , T − 1; n = 0, 1, . . . ,N)

ft(n) = min or max
xt allowable

⎧⎪⎪
⎨
⎪⎪⎩

(
contribution of
decision xt

) + ft+1(
new state
resulting
from xt

)

⎫⎪⎪
⎬
⎪⎪⎭

● Desired value-to-go function value

● How does the recursive representation relate to the shortest/longest path representation?

Shortest/longest path Recursive

node tn ↔ state n at stage t

edge (tn , (t + 1)m) ↔ allowable decision xt in state n at stage t that results in
being in state m at stage t + 1

length of edge (tn , (t + 1)m) ↔ contribution of decision xt in state n at stage t that
results in being in state m at stage t + 1

length of shortest/longest path from
node tn to end node

↔ value-to-go function ft(n)

length of edges (Tn , end) ↔ boundary conditions fT(n)

shortest or longest path ↔ recursion is min or max:

ft(n) = min or max
x t allowable

⎧⎪⎪
⎨
⎪⎪⎩

(
contribution of
decision xt

)+ ft+1(
new state
resulting
from xt

)

⎫⎪⎪
⎬
⎪⎪⎭

source node 1n ↔ desired value-to-go function value f1(n)

3

2 Solving DP recursions

● To improve our understanding of how this recursive representation works, let’s solve the DP we just wrote for
the knapsack problem

● We solve the DP backwards:

○ start with the boundary conditions in stage T

○ compute values of the value-to-go function ft(n) in stages T − 1, T − 2, . . . , 3, 2

○ . . .until we reach the desired value-to-go function value

● Stage 4 computations – boundary conditions:

● Stage 3 computations:

f3(8) =

f3(7) =

f3(6) =

f3(5) =

f3(4) =

f3(3) =

f3(2) =

f3(1) =

f3(0) =

4

● Stage 2 computations:

f2(8) =

f2(7) =

f2(6) =

f2(5) =

f2(4) =

f2(3) =

f2(2) =

f2(1) =

f2(0) =

● Stage 1 computations – desired value-to-go function:

● Maximum value of the�:

● Metals to take to achieve this maximum value:

5

3 Another example

Example 2. _e Dijkstra Brewing Company is planning production of its new limited run beer, Primal Pilsner. _e
company must supply 1 batch next month, then 2 and 4 in successive months. Each month in which the company
produces the beer requires a factory setup cost of $5,000. Each batch of beer costs $2,000 to produce. Batches can be
held in inventory at a cost of $1,000 per batch per month. Capacity limitations allow a maximum of 3 batches to be
produced during each month. In addition, the size of the company’s warehouse restricts the ending inventory for each
month to at most 3 batches. _e company has no initial inventory.

_e company wants to ûnd a production plan that will meet all demands on time and minimizes its total production
and holding costs over the next 3 months. Formulate this problem as a dynamic program by giving its recursive
representation. Solve the dynamic program.

Formulating the DP

● Back in Lesson 5, we formulated this problem as a dynamic program with the following shortest path representa-
tion:

○ Stage t represents the beginning of month t (t = 1, 2, 3) or the end of the decision-making process (t = 4).
○ Node tn represents having n batches in inventory at stage t (n = 0, 1, 2, 3).

10

11

12

13

20

21

22

23

30

31

32

33

40

41

42

43

end
Stage 1 Stage 2 Stage 3 Stage 4

0

0

0

0

source sink

Month Production amount Edge Edge length

1 0 (1n , 2n−1) for n = 1, 2, 3 1(n − 1)
1 1 (1n , 2n) for n = 0, 1, 2, 3, 4 5 + 2(1) + 1(n)
1 2 (1n , 2n+1) for n = 0, 1, 2 5 + 2(2) + 1(n + 1)
1 3 (1n , 2n+2) for n = 0, 1 5 + 2(3) + 1(n + 2)

2 0 (2n , 3n−2) for n = 2, 3 1(n − 2)
2 1 (2n , 3n−1) for n = 1, 2, 3 5 + 2(1) + 1(n − 1)
2 2 (2n , 3n) for n = 0, 1, 2, 3 5 + 2(2) + 1(n)
2 3 (2n , 3n+1) for n = 0, 1, 2 5 + 2(3) + 1(n + 1)

3 0 not possible
3 1 (3n , 4n−3) for n = 3 5 + 2(1) + 1(n − 3)
3 2 (3n , 4n−2) for n = 2, 3 5 + 2(2) + 1(n − 2)
3 3 (3n , 4n−1) for n = 1, 2, 3 5 + 2(3) + 1(n − 1)

6

● Let dt = number of batches required in month t, for t = 1, 2, 3

● Stages:

● States:

● Allowable decisions xt at stage t and state n:

● Contribution of decision xt at stage t and state n:

● Value-to go function ft(n) at stage t and state n:

● Boundary conditions:

● Recursion:

● Desired value-to-go function value:

7

Solving the DP

● Stage 4 computations – boundary conditions:

● Stage 3 computations:

f3(3) =

f3(2) =

f3(1) =

f3(0) =

● Stage 2 computations:

f2(3) =

f2(2) =

f2(1) =

f2(0) =

● Stage 1 computations – desired value-to-go function:

● Minimum total production and holding cost:

● Production amounts that achieve this minimum value:

8

A Problems

Problem 1 (Dynamic Distillery – recursion). You have been put in charge of launching Dynamic Distillery’s new
bourbon whiskey. _ere are 4 nonoverlapping phases: research, development, manufacturing system design, and
initial production and distribution. Each phase can conducted the two speeds: normal or priority. _e times required
(in months) to complete each phases at the two speeds are:

Manufacturing Initial Production
Level Research Development System Design and Distribution

Normal 4 3 5 2
Priority 2 2 3 1

_e costs (in millions of $) of complete each phase at the two speeds are:

Manufacturing Initial Production
Level Research Development System Design and Distribution

Normal 2 2 3 1
Priority 3 3 4 2

You have been given $10 million to execute the launch as quickly as possible. Formulate this problem as a dynamic
program by giving its recursive representation. Solve the dynamic program.

Problem 2 (Pear Computers – recursion). Pear Computers has a contract to deliver the following number of laptop
computers during the next three months:

Month 1 Month 2 Month 3

Laptop computers required 200 300 200

For each laptop produced during months 1 and 2, a $100 cost is incurred; for each laptop produced during month 3,
a $120 cost is incurred. Each month in which the company produces laptops requires a factory setup cost of $2,500.
Laptops can be held in a warehouse at a cost of $15 for each laptop in inventory at the end of a month. _e warehouse
can hold at most 400 laptops.

Laptops made during a month may be used to meet demand for that month or any future month. Manufacturing
constraints require that laptops be produced in multiples of 100, and at most 300 laptops can be produced in any
month. _e company’s goal is to ûnd a production plan that will meet all demands on time and minimizes its total
production and holding costs over the next 3 months. Formulate this problem as a dynamic program by giving its
recursive representation. Solve the dynamic program.

9

	Warm up
	Formulating DP recursions
	Solving DP recursions
	Problems
	Solutions to Problems

