## Lesson 11. Formulating Dynamic Programming Recursions

## 0 Warm up

Consider the knapsack problem we studied in Lesson 5:
Example 1. You are a thief deciding which precious metals to steal from a vault:

|  | Metal | Weight (kg) | Value |
| :--- | :--- | :---: | :---: |
| 1 | Gold | 3 | 11 |
| 2 | Silver | 2 | 7 |
| 3 | Platinum | 4 | 12 |

You have a knapsack that can hold at most 8 kg . If you decide to take a particular metal, you must take all of it. Which items should you take to maximize the value of your theft?

- We formulated the following DP for this problem by giving the following longest path representation:

- Let $f_{t}(n)=$ length of a shortest path from node $t_{n}$ to the end node
- In the context of the knapsack problem:

$$
\begin{aligned}
& f_{1}(8)= \\
& f_{2}(5)= \\
& f_{3}(3)=
\end{aligned}
$$

- In other words, these are optimal values of subproblems of the knapsack problem


## 1 Formulating DP recursions

- Last lesson: recursions for shortest path problems
- Dynamic programs are not usually given as shortest/longest path problems
- However, it is usually easier to think about DPs this way
- Instead, the standard way to describe a dynamic program is a recursion that defines the optimal value of one subproblem in terms of the optimal values of other subproblems
- Let's formulate the knapsack problem in Example 1 as a DP, but now by giving its recursive representation
- Let

$$
w_{t}=\text { weight of metal } t \quad v_{t}=\text { value of metal } t \quad \text { for } t=1,2,3
$$

- Stages:
$\square$
- States:
- Allowable decisions $x_{t}$ at stage $t$ and state $n$ :
- Contribution of decision $x_{t}$ at stage $t$ and state $n$ :

- Value-to go function $f_{t}(n)$ at stage $t$ and state $n$ :
$\square$
- Boundary conditions:
- Recursion:
- Desired value-to-go function value:
- In general, to formulate a DP by giving its recursive representation:


## Dynamic program - recursive representation

- Stages $t=1,2, \ldots, T$ and states $n=0,1,2, \ldots, N$
- Allowable decisions $x_{t}$ at stage $t$ and state $n$
$(t=1, \ldots, T-1 ; n=0,1, \ldots, N)$
- Contribution of decision $x_{t}$ at stage $t$ and state $n$
$(t=1, \ldots, T ; n=0,1, \ldots, N)$
- Value-to-go function $f_{t}(n)$ at stage $t$ and state $n$
$(t=1, \ldots, T ; n=0,1, \ldots, N)$
- Boundary conditions on $f_{T}(n)$ at state $n$
$(n=0,1, \ldots, N)$
- Recursion on $f_{t}(n)$ at stage $t$ and state $n$
$(t=1, \ldots, T-1 ; n=0,1, \ldots, N)$

$$
f_{t}(n)=\min _{x_{t} \text { allowable }}\left\{\binom{\text { contribution of }}{\text { decision } x_{t}}+f_{t+1}\left(\begin{array}{c}
\text { new state } \\
\text { resulting } \\
\text { from } x_{t}
\end{array}\right)\right\}
$$

- Desired value-to-go function value
- How does the recursive representation relate to the shortest/longest path representation?

| Shortest/longest path |  | Recursive |
| :---: | :---: | :---: |
| node $t_{n}$ |  | state $n$ at stage $t$ |
| edge $\left(t_{n},(t+1)_{m}\right)$ | $\leftrightarrow$ | allowable decision $x_{t}$ in state $n$ at stage $t$ that results in being in state $m$ at stage $t+1$ |
| length of edge $\left(t_{n},(t+1)_{m}\right)$ | $\leftrightarrow$ | contribution of decision $x_{t}$ in state $n$ at stage $t$ that results in being in state $m$ at stage $t+1$ |
| length of shortest/longest path from node $t_{n}$ to end node |  | value-to-go function $f_{t}(n)$ |
| length of edges ( $T_{n}$, end) |  | boundary conditions $f_{T}(n)$ |
| shortest or longest path |  | recursion is min or max: |
|  |  | $f_{t}(n)=\min _{x_{t} \text { allowable }}$ or max $\left\{\binom{\right.$ contribution of }{ decision $\left.x_{t}}+f_{t+1}\left(\begin{array}{c}\text { new state } \\ \text { resulting } \\ \text { from } x_{t}\end{array}\right)\right\}$ |
| source node $1_{n}$ |  | desired value-to-go function value $f_{1}(n)$ |

## 2 Solving DP recursions

- To improve our understanding of how this recursive representation works, let's solve the DP we just wrote for the knapsack problem
- We solve the DP backwards:
- start with the boundary conditions in stage $T$
- compute values of the value-to-go function $f_{t}(n)$ in stages $T-1, T-2, \ldots, 3,2$
- ... until we reach the desired value-to-go function value
- Stage 4 computations - boundary conditions:
$\square$
- Stage 3 computations:
$f_{3}(8)=\square$
$f_{3}(7)=\square$
$f_{3}(6)=\square$
$f_{3}(5)=\square$
$f_{3}(4)=\square$
$f_{3}(3)=\square$
$f_{3}(2)=\square$
$f_{3}(1)=\square$
$f_{3}(0)=\square$
- Stage 2 computations:
$f_{2}(8)=\square$
$f_{2}(7)=\square$
$f_{2}(6)=\square$
$f_{2}(5)=\square$
$f_{2}(4)=\square$
$f_{2}(3)=\square$
$f_{2}(2)=\square$
$f_{2}(1)=\square$
$f_{2}(0)=\square$
- Stage 1 computations - desired value-to-go function:
- Maximum value of theft:
- Metals to take to achieve this maximum value:


## 3 Another example

Example 2. The Dijkstra Brewing Company is planning production of its new limited run beer, Primal Pilsner. The company must supply 1 batch next month, then 2 and 4 in successive months. Each month in which the company produces the beer requires a factory setup cost of $\$ 5,000$. Each batch of beer costs $\$ 2,000$ to produce. Batches can be held in inventory at a cost of $\$ 1,000$ per batch per month. Capacity limitations allow a maximum of 3 batches to be produced during each month. In addition, the size of the company's warehouse restricts the ending inventory for each month to at most 3 batches. The company has no initial inventory.

The company wants to find a production plan that will meet all demands on time and minimizes its total production and holding costs over the next 3 months. Formulate this problem as a dynamic program by giving its recursive representation. Solve the dynamic program.

## Formulating the DP

- Back in Lesson 5, we formulated this problem as a dynamic program with the following shortest path representation:
- Stage $t$ represents the beginning of month $t(t=1,2,3)$ or the end of the decision-making process $(t=4)$.
- Node $t_{n}$ represents having $n$ batches in inventory at stage $t(n=0,1,2,3)$.


| Month | Production amount | Edge |  | Edge length |
| :---: | :---: | :--- | :--- | :--- |
| 1 | 0 | $\left(1_{n}, 2_{n-1}\right)$ | for $n=1,2,3$ | $1(n-1)$ |
| 1 | 1 | $\left(1_{n}, 2_{n}\right)$ | for $n=0,1,2,3,4$ | $5+2(1)+1(n)$ |
| 1 | 2 | $\left(1_{n}, 2_{n+1}\right)$ | for $n=0,1,2$ | $5+2(2)+1(n+1)$ |
| 1 | 3 | $\left(1_{n}, 2_{n+2}\right)$ | for $n=0,1$ | $5+2(3)+1(n+2)$ |
| 2 | 0 | $\left(2_{n}, 3_{n-2}\right)$ | for $n=2,3$ | $1(n-2)$ |
| 2 | 1 | $\left(2_{n}, 3_{n-1}\right)$ | for $n=1,2,3$ | $5+2(1)+1(n-1)$ |
| 2 | 2 | $\left(2_{n}, 3_{n}\right)$ | for $n=0,1,2,3$ | $5+2(2)+1(n)$ |
| 2 | 3 | $\left(2_{n}, 3_{n+1}\right)$ | for $n=0,1,2$ | $5+2(3)+1(n+1)$ |
| 3 | 0 | not possible |  |  |
| 3 | 1 | $\left(3_{n}, 4_{n-3}\right)$ | for $n=3$ | $5+2(1)+1(n-3)$ |
| 3 | 2 | $\left(3_{n}, 4_{n-2}\right)$ | for $n=2,3$ | $5+2(2)+1(n-2)$ |
| 3 | 3 | $\left(3_{n}, 4_{n-1}\right)$ | for $n=1,2,3$ | $5+2(3)+1(n-1)$ |

- Let $d_{t}=$ number of batches required in month $t$, for $t=1,2,3$
- Stages:
$\square$
- States:
$\square$
- Allowable decisions $x_{t}$ at stage $t$ and state $n$ :
$\square$
- Contribution of decision $x_{t}$ at stage $t$ and state $n$ :

- Value-to go function $f_{t}(n)$ at stage $t$ and state $n$ :
$\square$
- Boundary conditions:
- Recursion:
$\square$
- Desired value-to-go function value:


## Solving the DP

- Stage 4 computations - boundary conditions:
$\qquad$
- Stage 3 computations:
$f_{3}(3)=\square$
$f_{3}(2)=\square$
$f_{3}(1)=\square$
$f_{3}(0)=\square$
- Stage 2 computations:
$f_{2}(3)=\square$
$f_{2}(2)=\square$
$f_{2}(1)=\square$
$f_{2}(0)=\square$
- Stage 1 computations - desired value-to-go function:
$\square$
- Minimum total production and holding cost:
- Production amounts that achieve this minimum value:


## A Problems

Problem 1 (Dynamic Distillery - recursion). You have been put in charge of launching Dynamic Distillery's new bourbon whiskey. There are 4 nonoverlapping phases: research, development, manufacturing system design, and initial production and distribution. Each phase can conducted the two speeds: normal or priority. The times required (in months) to complete each phases at the two speeds are:

| Level | Research | Development | Manufacturing <br> System Design | Initial Production <br> and Distribution |
| :--- | :---: | :---: | :---: | :---: |
| Normal | 4 | 3 | 5 | 2 |
| Priority | 2 | 2 | 3 | 1 |

The costs (in millions of $\$$ ) of complete each phase at the two speeds are:

| Level | Research | Development | Manufacturing <br> System Design | Initial Production <br> and Distribution |
| :--- | :---: | :---: | :---: | :---: |
| Normal | 2 | 2 | 3 | 1 |
| Priority | 3 | 3 | 4 | 2 |

You have been given $\$ 10$ million to execute the launch as quickly as possible. Formulate this problem as a dynamic program by giving its recursive representation. Solve the dynamic program.

Problem 2 (Pear Computers - recursion). Pear Computers has a contract to deliver the following number of laptop computers during the next three months:

|  | Month 1 | Month 2 | Month 3 |
| :--- | :---: | :---: | :---: |
| Laptop computers required | 200 | 300 | 200 |

For each laptop produced during months 1 and 2 , a $\$ 100$ cost is incurred; for each laptop produced during month 3 , a $\$ 120$ cost is incurred. Each month in which the company produces laptops requires a factory setup cost of $\$ 2,500$. Laptops can be held in a warehouse at a cost of $\$ 15$ for each laptop in inventory at the end of a month. The warehouse can hold at most 400 laptops.

Laptops made during a month may be used to meet demand for that month or any future month. Manufacturing constraints require that laptops be produced in multiples of 100 , and at most 300 laptops can be produced in any month. The company's goal is to find a production plan that will meet all demands on time and minimizes its total production and holding costs over the next 3 months. Formulate this problem as a dynamic program by giving its recursive representation. Solve the dynamic program.

